edexcel

Mark Scheme (Results)

November 2012

GCSE Mathematics (Linear) 1MA0 Higher (Calculator) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG033850
All the material in this publication is copyright
© Pearson Education Ltd 2012

NOTES ON MARKI NG PRI NCI PLES

1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labeling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
11 Linear equations
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

12 Parts of questions
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers
Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

```
Guidance on the use of codes within this mark scheme
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```

| 1MA0_2H | | | | |
| :---: | :---: | :---: | :---: | :---: | :--- |
| Question | Working | Answer | Mark | Notes |
| 1 | | | | |

1MA0_2H					
Question		Working	Answer	Mark	Notes
*3		$\begin{aligned} & 3 \times £ 193.86=£ 581.58 \\ & £ 581.58 \times 0.85=£ 494.343 \end{aligned}$	£494.34	5	M1 3×193.86 ($=581.58$) B1 ft correct discount \% identified or used in working (may be identified in table) M1 '581.58’×'0.15' (=87.23(7)) M1 (dep on the previous M1) '581.58' - '87.23(7)' $(=494.34(3) \text { or } 494.35)$ C1 (dep on all method marks) for $£ 494.34$ or $£ 494.35$ identified as final answer with correct money notation OR M1 3×193.86 (= 581.58) B1 ft correct discount \% identified or used in working (may be identified in table) M2 '581.58’×'0.85' (= 494.34(3)) (M1 '581.58' × '1.15' (=668.81(7)) C1 (dep on all method marks) for $£ 494.34$ or $£ 494.35$ identified as final answer with correct money notation NB. Throughout, values may be rounded or truncated to 2 decimal places

1MA0_2H					
Question		Working	Answer	Mark	Notes
5		$\begin{aligned} & 25 \div 50=0.5 \mathrm{~h}=30 \mathrm{~min} \\ & 25 \div 60=0.416 \mathrm{~h}=25 \mathrm{~min} \end{aligned}$	5	3	M1 for $25 \div 50$ or $\frac{60}{50} \times 25$ or $30(\mathrm{~min})$ or $0.5(\mathrm{~h})$ or $25 \div 60$ or $\frac{60}{60} \times 25$ or $25(\mathrm{~min})$ or $0.41(6)(\mathrm{h})$ or 0.42 (h) M1(dep) ‘0.5’ - 0.416 'or ‘ 30 ' - ' 25 ' A1 cao OR M1 for $60 \div 25(=2.4)$ and $60 \div$ " 2.4 " or $50 \div 25(=2)$ and $60 \div$ " " M1(dep) '30' - '25' A1 cao

Question		Working	Answer	Mark	Notes
7		$\begin{aligned} & 17.8 \div 160 \times 210=0.11125 \times 210=23.3625 \mathrm{~g} \\ & \text { OR } \\ & 210 \div 160 \times 17.8=1.3125 \times 17.8=23.3625 \mathrm{~g} \\ & \text { OR } \\ & 210-160(=50) \\ & \frac{17.8}{160} \times{ }^{\prime} 50 '(=5.5625) \\ & 17.8+5.5625 \end{aligned}$	23.3(625)	3	M1 $17.8 \div 160(=0.11125)$ or $17.8 \times 210(=3738)$ or $210 \div 160(=1.3125)$ M1 (dep) ‘ 0.11125 ' $\times 210$ or ' 3738 ' $\div 160$ or ' 1.3125 ' $\times 17.8$ A1 for answer in range 23.3-23.4 OR M1 for $\frac{17.8}{160} \times(210-160)(=5.5625)$ M1 (dep) for 17.8 + '5.5625' A1 for answer in range 23.3-23.4 OR M1 for correct method to find weight of 2 cm or 5 cm or 10 cm M1 (dep) for complete method A1 for answer in range 23.3-23.4

1MA0_2H					
Question		Working	Answer	Mark	Notes
8	(a)		-1, 0, 1, 2, 3	2	B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect values) eg. 0, 1, 2, 3 or one additional value, eg $-1,0,1,2,3,4$)
	(b)		$-4<x \leq 3$	2	B2 for $-4<x \leq 3$ or >-4 and ≤ 3 (B1 for $-4<x$ or $x>-4$ or $x \leq 3$ or $3 \geq x$ or >-4 or ≤ 3 or $-4 \leq x<3$) NB: Accept the use of any letter
	(c)	$\begin{aligned} & 3 y-2>5 \\ & 3 y>7 \end{aligned}$	$y>\frac{7}{3}$	2	M1 for clear intention to add 2 to both sides (of inequality or equation) or clear intention to divide all three terms by 3 or $3 y>7$ or $3 y<7$ or $3 y=7$ A1 $y>\frac{7}{3}$ or $y>2 \frac{1}{3}$ or $y>2 . \dot{3}$ NB. final answer must be an inequality (SC B1 for $\frac{7}{3}$ oe seen if M0 scored)
9	(a)		32	1	B1 cao
	(b)	$\mathrm{LQ}=21 \mathrm{UQ}=45$	24	2	M1 for 45 or 21 or 43.5 or 19.5 or $7.75^{\text {th }}$ or $8^{\text {th }}$ or $23.25^{\text {th }}$ or $24^{\text {th }}$ (all of above may be seen in working space or indicated on S\&L) or clear attempt to find UQ and LQ from a list of values or in stem and leaf diagram A1 cao

1M						
Question	Working			Answer	Mark	Notes
10	For example			Cheaper in US	4	M1 for 1.24×3.79 (= 4.6996) or
		UK	USA			1.24×1.47 (=1.8228)
	\$ per US gal	(\$)6.90(8412)	[\$3.15]			M1 for $1.47 \times{ }^{\prime} 4.6996$ ' or $3.79 \times 1.8228 '$
	£ per litre	[£1.24]	(£)0.56(53...)			A1 for 6.90(8412)
	£ per US gal	(£)4.69(96)	(£)2.14(28...)			C1 (dep on M2) for \$'6.90(8412)' or \$'6.91' and
	\$ per litre	(\$)1.82(28)	(\$)0.83(11...)			reaching a conclusion consistent with their calculation
	$\begin{aligned} & \text { Cost in } £ \text { per US gal of UK fuel }=£ 1.24 \times 3.79 \\ & =£ 4.6996 \\ & \text { Cost in } \$ \text { per US gal of UK fuel }=\$ 1.47 \times \\ & 4.6996=\$ 6.908412 \end{aligned}$					OR
				M1 for $3.15 \div 1.47$ (=2.1428..) or $3.15 \div 3.79(=0.8311)$		
						A1 for $0.56(53 \ldots)$
	OR					C1 (dep on M2) for $£^{\prime} 0.56(53 . .$.$) ' or ' £ 0.57$ ' and reaching a conclusion consistent with their calculation
	Cost in $£$ per litre of US fuel $=£ 2.14 \div 3.79$ =£0. 56(5..					OR M1 $1.24 \times 3.79(=4.6996)$
				M1 $3.15 \div 1.47$ ($=2.1428 .$.		
	OR					A1 4.69(96) and 2.14(28...)
	Cost in UK in $£$ per US gal $=£ 1.24 \times 3.79$ (=£4.6996)					C1 (dep on M2) for $£^{\prime} 4.69$ (96)' or $£^{\prime} 4.70$ ’ AND
				$£^{\prime} 2.14(28 . .$.$) ' and reaching a conclusion consistent with$ their calculation		
	Cost in USA in $£$ per US gal $=£ 3.15 \div 1.47$ (=2.1428)					
	OR					M1 for 1.24×1.47 (=1.8228)
				M1 for $3.15 \div 3.79$ ($=0.8311 \ldots$)		
	Cost in UK is \$ per litre = $£ 1.24 \times 1.47$$(=1.8228)$					A1 for 1.82(28) and 0.83(11...)
	Cost in USA in \$ per litre $=3.15 \div 3.79$ (=0.8311...)					C1 (dep on M2) for \$'1.82(28)' and \$'0.83(11...)' and reaching a conclusion consistent with their calculation
						NB: Throughout values can be rounded or truncated to 1 or more decimal places. In order to award the communication mark, correct currency must be shown with the calculated value(s) but these can still be rounded or truncated to one or more decimal places as they are being used for comparison.

1M	2H					
Question			Working	Answer	Mark	Notes
11	(a)			show	2	M1 for $x \times x \times x$ or $2 \times 5 \times x$ or vol of cube $=x^{3}$ or vol cuboid $=10 x$ A1 correct completion leading to $x^{3}-10 x=100$
	(b)	$x=1$	-9	5.4	4	B2 for a trial $5 \leq x \leq 6$ evaluated correctly
		$x=2$	-2			(B1 for any two trials evaluated correctly for
		$x=3$	-3			positive values of x) B1 for a different trial $5.3<x<5.4$ evaluated
		$x=4$	24			correctly
		$x=5$	75			B1 (dep on at least one previous B1) for 5.4
		$x=6$	156			
		x $=10$	900			Accept trials correct to the nearest whole number
		$x=5.1$	81.(651)			(rounded or truncated) if the value of x is to 1 d.p.,
		$x=5.2$	88.(608)			but correct to 1 d.p. (rounded or truncated) if the
		$x=5.3$	95.(877)			value of x is to 2 or more d.p.
		$x=5.4$	103.(464)			
		$x=5.5$	111.(375)			NB. Allow 100 for a trial of $x=5.355$
		$x=5.6$	119.(616)			
		$x=5.7$	128.(193)			
		x $x=5.8$	137.(112)			
		$x=5.9$	146.(379)			
		$x=5.35$	99.6(30375)			
		$x=5.36$	100.3(90656)			
		$x=5.355$	100.0(101139)			

1MA0_2H					
Question		Working	Answer	Mark	Notes
12	(a)		Correct Frequency Polygon		B2 Fully correct polygon. Points plotted at the midpoint (B1 All points plotted accurately not joined, or one error in plotting but joined or all points plotted accurately and joined with, additionally, first joined to last or all points at the correct heights and consistently within or at the ends of the intervals and joined (Includes joining last to first to make a polygon)) NB: ignore polygon before $1^{\text {st }}$ point, and after last point. Ignore any histograms.
	(b)		$30<t \leq 40$		B1 Allow any notation eg, 30-40 ft polygon
	(c)	$(6+2)=8,(4+8+14+16+6+2)=50$	$\frac{8}{50} \text { oe }$	2	M1 $(6+2) \div(4+8+14+16+6+2)$ or ft figures from polygon or $\frac{8}{a}$ with $a>8$ or $\frac{c}{50}$ with $c<50$ or 8 and 50 used but notation incorrect (eg. 8:50, 8 out of 50) A1 $\frac{8}{50}$ oe (eg. 0.16) or ft figures from polygon

1MA0_2H					
Question		Working	Answer	Mark	Notes
16		$\begin{aligned} & \frac{64.8-59.3}{64.8} \times 100(=8.487 \ldots) \\ & \text { OR } \\ & \frac{59.3}{64.8} \times 100=91.512 \\ & 100-‘ 91.512 '=8.487 \ldots) \end{aligned}$	8.49	3	M1 $64.8-59.3$ (=5.5) M1 (dep) $\frac{{ }^{5.5} \text { ' }}{64.8} \times 100$ oe A1 $8.48-8.49$ OR M1 $\frac{59.3}{64.8} \times 100$ oe $(=91.5(12 \ldots))$ M1 (dep) 100 - '91.5' A1 8.48-8.49 OR M1 $\frac{59.3}{64.8}(=0.915(12 . .)$. M1 (dep) $100 \times\left(1-{ }^{2} 0.915\right.$ ') A1 $8.48-8.49$

1MA0_2H												
Question		Working								Answer	Mark	Notes
17		$\sin 60^{\circ}=\frac{x}{32} x=32 \times \sin 60(=27.712 \ldots)$								27.7	3	M1 $\sin 60=\frac{x}{32}$ or $\frac{x}{\sin 60}=\frac{32}{\sin 90}$ oe M1 $(x=) 32 \times \sin 60$ or $(x=) \frac{32}{\sin 90} \times \sin 60$ A1 27.7-27.72 OR M1 $\quad \cos (90-60)=\frac{x}{32}$ M1 $(x=) 32 \times \cos (90-60)$ A1 $27.7-27.72$ Radians : - 9.7539398... Gradians : 25.888554... SC : B2 for an answer in the range (-) 9.75 to (-)9.754 or 25.8 to 25.9
18	(a) (b)	y	$\begin{array}{l\|l} x & 0.5 \\ \hline & 12 \\ \hline \end{array}$	1	(3)	3 2	$\begin{array}{\|l\|l} \hline 4 \\ \hline(1.5) \\ \hline \end{array}$	$\begin{aligned} & \hline 5 \\ & \hline 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & \hline(1) \\ & \hline \end{aligned}$	Correct table Correct graph	2 2	B2 all 3 correct (B1 1 or 2 correct) M1 at least 6 points plotted correctly from their table A1 cao for correct curve drawn from $(0.5,12)$ to $(6,1)$

1MA0_2H												
Question		Working								Answer	Mark	Notes
21	(a)		$\frac{2}{7} \times \frac{1}{6}$							$\frac{2}{42}$	2	$\begin{aligned} & \text { M1 } \frac{2}{7} \times \frac{1}{6} \\ & \text { A1 } \frac{2}{42} \text { ое } \end{aligned}$
		OR										OR
			1	1	2	2	2	3	3			M1 Fully correct sample space with the correct
		1	X	$\sqrt{ }$								cases identified
		1	$\sqrt{ }$	X								2
		2			X							A1 $\frac{2}{42}$ oe
		2				X						42
		2					X					SC $\cdot \mathrm{B} 1$ for an answer of $\frac{4}{49}$
		3						X				CC. B1 for an 49
		3							X			

1MA0_2H					
Question		Working	Answer	Mark	Notes
22	(a)	$x=\frac{-9 \pm \sqrt{9^{2}-4 \times 2 \times-7}}{2 \times 2}=\frac{-9 \pm \sqrt{137}}{4}$	0.676, - 5.18	3	$-9+\sqrt{9^{2}-4 \times 2 \times-7}$
					M1 $\frac{-9 \pm \sqrt{9^{2}-4 \times 2 \times-7}}{2 \times 2}$ allow substitution of
					2×2 ± 7 for c
					$\text { M1 } \quad-9 \pm \sqrt{137}$
					M1 4
					A1 answers in ranges $0.67-0.68 \text { and }-5.17 \text { to }-5.18$
					OR
					M1 $\left(x+\frac{9}{4}\right)^{2}$ oe
					M1 for method leading to $\pm \sqrt{\frac{137}{16}}-\frac{9}{4}$
					M1 for method leading to $\pm \sqrt{16}-\frac{9}{4}$
					A1 answers in ranges $0.67-0.68 \text { and }-5.17 \text { to }-5.18$
	(b)	Put $y=\frac{1}{x}$ and use part (a)	1.48, - 0.193	2	M1 $y=\frac{1}{x}$ or $x=\frac{1}{y}$
		Or			A1 (ft) answers in range
		$7 y^{2}-9 y-2=0$			OR $1.47-1.48$ and -0.19 to -0.194
		$y=--9 \pm \sqrt{(-9)^{2}-4 \times 7 \times(-2)}$			OR M1 fully correct method which leads to
		$y=\frac{2 \times 7}{2}$			$7 y^{2}-9 y-2=0$ or $-7 y^{2}+9 y+2=0$ with correct
		$9 \pm \sqrt{137}$			method to solve (condone sign errors in
		-			substitution)
					$1.47-1.48 \text { and }-0.19 \text { to }-0.194$

1MA0_2H					
Question		Working	Answer	Mark	Notes
23	(a)	Let O be the centre of the base. $\begin{aligned} & O B^{2}+O C^{2}=10^{2} ; O B^{2}=50 \\ & A O^{2}=A B^{2}-O B^{2}=50 \\ & \mathrm{Vol}=\frac{1}{3} \times 10^{2} \times \sqrt{50} \end{aligned}$ OR Let M be the midpt of side $B C$ and let O be the centre of the base. $\begin{aligned} & A M^{2}+M C^{2}=10^{2} ; A M^{2}=75 \\ & A O^{2}=A M^{2}-M O^{2}=50 \\ & \text { Vol }=\frac{1}{3} \times 10^{2} \times \sqrt{50} \end{aligned}$	236	4	M1 correct method to start to find $B D$ or $B O$ using triangle $O B C$ or triangle $B C D$ (oe) $\begin{aligned} & \text { Eg. } O B^{2}+O C^{2}=10^{2} \text { or } B O^{2}=50 \text { or } \\ & B O=\sqrt{50}(=7.07 . .) \text { or } B O=\frac{\sqrt{200}}{2} \text { or } \\ & 10^{2}+10^{2}=B D^{2} \text { or } B D^{2}=200 \text { or } B D=\sqrt{200}(=14.1 . .) \end{aligned}$ M1 (dep) correct method to find height of pyramid using triangle $A O B$ $\begin{aligned} & \text { Eg. } A O^{2}=10^{2}-{ }^{\prime} \sqrt{50}^{\prime 2} \text { or } A O^{2}=50 \text { or } \\ & A O=\sqrt{50}(=7.07 . .) \end{aligned}$ M1 (indep) $\frac{1}{3} \times 10^{2} \times{ }^{\prime} \sqrt{50}$, (but not $\frac{1}{3} \times 10^{2} \times 10$) A1 235-236 OR M1 correct method to start to find height of a face using triangle $A M C$ (oe) Eg. $A M^{2}+5^{2}=10^{2}$ or $A M^{2}=75$ or $A M=\sqrt{75}(=8.66 \ldots)$ M1 (dep) correct method to find height of pyramid using triangle $A O M$ A1 235-236

1MA0_2H					
Question		Working	Answer	Mark	Notes
23 cont.	(a)				OR M1 for $\sin 45=\frac{x}{10}$ or $\cos 45=\frac{x}{10}$ M1 for $h=10 \times \sin 45$ or $h=10 \times \cos 45$ (=7.07..) M1 (indep) $\frac{1}{3} \times 10^{2} \times$ '7.07...' (but not $\frac{1}{3} \times 10^{2} \times 10$) A1 $235-236$

1MA0_2H					
Question		Working	Answer	Mark	Notes
23	(b)	Angle $A B O=45^{\circ}$ Angle $D A B=180-45-45$ OR In $\triangle B A D, \cos A=\frac{10^{2}+10^{2}-{ }^{\prime} \sqrt{200}{ }^{\prime 2}}{2 \times 10 \times 10}=0$ OR In $\triangle B O A, \cos B=\frac{' \sqrt{50}}{10}$ Angle $B A D=180-‘ 45$ ' -45 ' OR $\sin A=\frac{' \sqrt{50} '}{10}$ $A=45$ Angle $B A D=2 \times$ '45'	90	,	M1 Angle $D A B=180-2 \times$ '45’ A1 89.98-90 OR M1 $\cos B A D=\frac{10^{2}+10^{2}-{ }^{\prime} \sqrt{200}{ }^{\prime 2}}{2 \times 10 \times 10}$ A1 89.98-90 OR M1 $\quad \sin A=\frac{' \sqrt{50}{ }^{\prime}}{10}$ A1 89.98-90

4.

12.

Frequency

Freq Den

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG033850 November 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

